46th CEEES Meeting
Minutes of R and ESS WG

Meeting location: Hotel Holiday Inn Airport

Date: 21st September 2006
Attendees: see list hereafter
<table>
<thead>
<tr>
<th>Name</th>
<th>1st name</th>
<th>Company/Society</th>
<th>phone</th>
<th>fax</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXEBSSON Bengt</td>
<td></td>
<td>AXEB AB</td>
<td>+33 1 34 88 35 23</td>
<td>+33 1 34 88 34 75</td>
<td>ba@axeb.se</td>
</tr>
<tr>
<td>GRZESKOWIAK Henri</td>
<td></td>
<td>MBDA F /ASTE</td>
<td>+33 1 34 88 35 23</td>
<td>+33 1 34 88 34 75</td>
<td>henri.grzeskowiak@mbda.fr office henri@grzeskowiak.net home</td>
</tr>
<tr>
<td>HOLY Michel</td>
<td></td>
<td>retired/SSEE</td>
<td>+41 1 865 46 68</td>
<td></td>
<td>michel.holy@sbluewin.ch</td>
</tr>
<tr>
<td>MITTERMAYR Roland</td>
<td></td>
<td>OGUS</td>
<td>+33 1 798 16 01</td>
<td>+33 1 798 16 01 700</td>
<td>gfoeugus@oif.co.at</td>
</tr>
<tr>
<td>PALMEN Helge</td>
<td></td>
<td>VTT Industrial Systems /SEEF</td>
<td>+358 9 456 56 31</td>
<td>+358 9 456 7042</td>
<td>Helge.Palmen@vtt.fi</td>
</tr>
<tr>
<td>PETTERSON Chris</td>
<td></td>
<td>ACS</td>
<td>+ 39 075 895 375</td>
<td>+ 39 0758955</td>
<td>Chamber.queen@qmail.com</td>
</tr>
<tr>
<td>PEREGO Marco</td>
<td></td>
<td>Angelantoni Industrie SPA</td>
<td>+39 075 8955 213</td>
<td>+39 075 8955 200</td>
<td>Marco.perego@angelantoni.it</td>
</tr>
<tr>
<td>RUDING Gunnar</td>
<td></td>
<td>Ass. of Swedish Engineering Industries /SEES</td>
<td>46 8 653 0418</td>
<td>46 8 653 0419</td>
<td>Gunnar.ruding@serment.pp.se</td>
</tr>
<tr>
<td>WEEETCH Colin</td>
<td></td>
<td>e2v Technologies/SEE</td>
<td>+ 44 1245 453654</td>
<td></td>
<td>colin.weetch@e2v.com</td>
</tr>
</tbody>
</table>
1 - **ADOPTION OF THE 44th CONGRESS R&ESS MEETING MINUTES**

The minutes are adopted.

2 - **Apologies FOR ABSENCE**

No.

3 - **INTRODUCTION OF NEW MEMBERS**

Roland Mittermayr is working with …

Chris Petterson is working with ACS where she is …

As a matter of introduction, she insists on the importance of testing in the product maturation process.

5- **ESS ACTIVITY**

It was agreed that there is a need for a basic terminology of terms relative to the tests, environmental engineering and reliability such as MTBF, MTTR, reliability test, accelerated test ….

It was proposed that all the members send a list of these terms, with the known definitions and corresponding source, to Marco, that will arrange a digest of all these inputs for next meeting.

Michel has proposed a list (see in attachment 1). This list has been examined during the meeting.

Durability: HG will provide next time the definition (adopt the definition of the IEC56); as it is related to the cost, is it affiliated to the life cycle cost? Refer to the documents elaborated by Technical Committee 56 within IEC (different from IEC 56 standard, that has been released by HG).

Michel Holy wonders if there is a Mathematical relation between Reliability and Maintainability?

Helge will examine the compatibility between the proposed terminology and IEC one.

HG will provide return from reliability and statistician colleagues on mathematical description.

Michel Holy will provide quick definitions of abbreviations. He is requesting to verify that the structure of the terms is complying with the content of the definition of the related terms.

Marco Perego will furnish an updated version of the basic terminology for next meeting. To be sent before the meeting.

6- **R ACTIVITY**

6.1 **Life cycles environmental profile**

It has been also decided in London to work of the product life cycles.

Extract from London meeting report: "

- The expected life profile of a product in different sectors of activity*, which is an important issue to consider in product sustainability growth
 - Output: life cycle environmental profile characterisation: climatic related parameters such as number of cycles, temperature range, rate of change, humidity, pressure if relevant, chemical contaminants, etc.)
 - or mechanical related parameters such as PSD for vibration, SRS or time histories for shock, etc.
- Operational use:
 - Dormant periods (storage)
 - Functional activation (ON/OFF, junction temperature elevation, electrolytic phenomenon, etc.)
- Identify the expected processes or modes of failure
• Assess the life duration of different type of technologies

The sectors of activity covered by the current members are: mobile phones, telecommunication, automation/robotics, nuclear power plant, control of climatic chambers, electronics in automotive industry, missiles.

Henri is proposing as a beginning to consider the following documents in which there are elements on life cycle profile description:
- French CIN EG 1 “Taking into account the Environment through a product development (see an English version as attached document)
- An example of life cycle description (see a french version as attached document)
- Hank Caruso fundamental paper on LCEP, presented at IEST (distributed during the current meeting).
- Henri has evoked the Strength / Stress approach; the general appendix of GAM EG 13 is describing this approach in one appendix (see annex 14 of General Appendix of GAM EG 13 in French, attached to the meeting report, in French).

Henri has also introduced a document dedicated to program management structuration: EN 9200.

The work will be continued on the example of life cycle description on the mobile equipment dedicated to pollution measurement.

6.2 Different types of tests

6.2.1 List of withheld tests

<table>
<thead>
<tr>
<th>Type of test</th>
<th>In charge of</th>
</tr>
</thead>
<tbody>
<tr>
<td>feasibility, design aid</td>
<td>Colin</td>
</tr>
<tr>
<td>Development test</td>
<td>Michel</td>
</tr>
<tr>
<td>Reliability growth test (RGT)</td>
<td>Colin</td>
</tr>
<tr>
<td>Highly accelerated tests</td>
<td>Henri</td>
</tr>
<tr>
<td>Accelerated tests</td>
<td>Helge</td>
</tr>
<tr>
<td>Qualification</td>
<td>Michel</td>
</tr>
<tr>
<td>Reliability demonstration</td>
<td>Colin</td>
</tr>
<tr>
<td>ESS including HASS</td>
<td>Henri</td>
</tr>
<tr>
<td>Acceptance test</td>
<td>Bengt *</td>
</tr>
<tr>
<td>Production reliability acceptance test (PRAT)</td>
<td>To be determined</td>
</tr>
<tr>
<td>Pre production (zero production)</td>
<td>Gunnar</td>
</tr>
<tr>
<td>Life duration</td>
<td>Colin</td>
</tr>
<tr>
<td>Verification (validation)</td>
<td>Bengt *</td>
</tr>
</tbody>
</table>

* to be confirmed

6.2.2 Template to apply to each of these tests

1. Test objective (purpose, definition…)
2. What is driving you for performing the test?
3. Level of assembly of the product submitted to test
4. Number of items submitted to test
5. Type of product relevant to be submitted to the test (mass volume low price product…)
6. Test duration (days, weeks, months…)
7. Separate or combined environments
8. Product strength and environment stress variabilities are or aren’t considered (in the process of deriving the test severity)
9. Does the test bring knowledge on reliability parameters?
6.2.3 Accelerated tests by Helge Palmen (see attachment 4)

Accelerated stress (Objective: identify product weaknesses by stimulation) and accelerated life testing (simulation of the field stresses): the discussion arose again in order to clarify the differences between the 2 types of tests.

<table>
<thead>
<tr>
<th>Table 1: The Two Main Categories of Accelerated Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Accelerated Life Testing (ALT)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Accelerated Stress Testing (AST)</td>
</tr>
</tbody>
</table>

The proposal of Helge is very close the above one presented within the START document established by the RAC, organisation depending upon US DOD Air force Command. The WG is not willing to adopt AST as part of the family of accelerated testing tests; ALT is the normally widely accepted accelerated testing approach; AST is oriented precipitation latent defects (purpose of ESS) or design weaknesses (purpose of highly accelerated tests): even still based on a "workable" knowledge of the failure mechanism as RAC proposes, AST has to do either with ESS (not a test), or with highly accelerated tests (not basically requesting knowledge of the physical model of failure), and not with accelerated testing. Otherwise, it would be confusing.

The lecture of the article of ISTIA sent to WG members has clarified the 3 types of accelerated tests: -type 1: those based on acceleration by reducing the number of experiments, based on design of experiments - type 2: the acceleration based on statistical models, - type 3: the acceleration by usage of physical models of failure. Only the type 3 is so far considered. : see attachment 4

6.2.4 Development tests by Michel Holy: see attachment 5

6.3 CEN WG10/EG8

Next meeting: the § "review and comparison of environmental management standards" page 39 and following will be discussed recommendation for a future work: page 29 (to confirm) first part of DEF STAN 0035 and CIN EG 1 (in English) will be discussed
7- TOUR OF TABLE

- Colin
 - New chairman for SEE : Neale Baske
 - After a period of declining , SEE is now increasing membership : 12 new members recently (for a total of 270 corporate members)
 - Courses of Cranfield :
 1. Reliability course is renewed.
 2. 20 to 30 students per course as an average
 3. 4 courses (one session per year) : shock, vibration, climatics and reliability
 4. Annual General Meeting scheduled net march
 5. Professional exchanges on following themes : laser, packaging and standards to be held on website in march 2007

- Roland :
 - 20 members within OGUS , and 30 expected end of year
 - Starting working groups : surface treatment ; polymer ; life estimation duration (meeting nov 29th 2006)

- Helge :
 - A handbook on packaging and mechanical structure in English is announced
 - New plans of European projects (one involving EDF in France)
 - A seminar held on Design for reliability approach : CD ROM available

- Bengt :
 - SEES (Swedish society) : Membership of 40 companies
 - New membership fee to get more companies
 - 2 regular meetings (seminars) per year : last one on ROHS , Risk of Hazardous Substances : How ABB is taking care
 - Working Group not very active
 - Training courses : 2 to 3 sessions of 2 days each per year , 40 persons as a whole. Since 12 years 370 persons have been trained.
 - 3 projects launched within Eureka project : 50 k€ per year

- Michel :
 - Workshop on “ How to specify a new product”
 - Next week will be held a symposium on HALT HASS (24 attendees expected)
- Marco:
 - AITPA lives bad time
 - Cooperation with the university on ROHS

List of virtual members
Current members + following list.

<table>
<thead>
<tr>
<th>TOOLA</th>
<th>Arja</th>
<th>NOKIA</th>
<th>+358 40 7685072</th>
<th>arja.toola@nokia.fi</th>
</tr>
</thead>
<tbody>
<tr>
<td>BODIN</td>
<td>Hakan</td>
<td>LabTest</td>
<td>?</td>
<td>hb@labtest.se</td>
</tr>
<tr>
<td>STREUBEL</td>
<td>Reinhard</td>
<td>BGT</td>
<td>49 7551896276</td>
<td>49 7551 892163</td>
</tr>
<tr>
<td>TURTOLA</td>
<td>Antti</td>
<td>KOTEL</td>
<td>358994565639</td>
<td>antti.turtola@vtt.fi</td>
</tr>
<tr>
<td>VAN DORP</td>
<td>Aad</td>
<td>National Aerospace Laboratory</td>
<td>+31-527-248457</td>
<td>+31-527-246210</td>
</tr>
<tr>
<td>TURTOLA</td>
<td>Antti</td>
<td>KOTEL</td>
<td>358994565639</td>
<td>35894567042</td>
</tr>
</tbody>
</table>
Definition(s) of Terms Dedicated to Availability, Reliability & Maintainability

1) Terminology-Structure

Environment Stress has direct influences on "Reliability" and "Maintainability"

2) Terms of Reliability and their abbreviations

- Reliability Function $R(t)$
- Failure Rate $\lambda(t)$
- Mean Time Between Failures MTBF
- Mean Time To Failures MTTF
- Mean Time To Mission - Failures MTTF$_M$
- Lifetime T_L
- Life Cycle LC
- Mission Profile MP
- Life Environmental Cycle Profile LCEP
Durability: capacity of a functional unity to execute a function required in definite conditions of use and of maintenance till his(its,her) end of useful life or until what it does not agree any more for economical or technological reasons (ref: Reliability, Maintenabilité and Availability - October, 1993).

- Dependability: together capacities of a product allowing it to arrange functional specified performances, at the deliberate moment, during duration foreseen, without damage for itself and for its environment (ref: BNAE RG Aéro 00040).

2.1) Relations between the terms of Reliability

\[MTTF = \int_{0}^{\infty} R(t) \cdot dt \quad \text{(for Lifetime} = \infty) \]

for a finite Lifetime the upper limit of the integral is \(T_L \)

\[\lambda(t) = \frac{d}{dt} \frac{R(t)}{R(t)} \]

This equation shows that the reliability function \(R(t) \) is completely defined by the failure rate \(\lambda(t) \).

With \(R(0) = 1 \), the reliability function reads as follows:

\[R(t) = e^{-\int_{0}^{t} \lambda(x) \, dx} \]

For \(\lambda(t) = \lambda = \text{constant} \) it follows:

\[R(t) = e^{-\lambda t} \text{ and in this case is } MTTF = \int_{0}^{\infty} e^{-\lambda t} \, dt = \frac{1}{\lambda} \]

2.2) Terms related to Reliability

- Reliability
- Analysis
- Blockdiagramm
- Requirements
- Verification
- Program
- Improvement
- Assurance of
- Evaluation
- Of mechanical Items

21 september 2006
Failure - Failure Analysis
- FMEA (Failure Mode And Effects Analysis)
- FMECA (Failure Mode, Effects and Criticality Analysis)
- Failure Cause
- Failure Mode
- Failure Symptom
- Failure Criticality
- Failure Effect
- Failure Detection
- Failure Localisation
- 8D process

Fault - Specification-fault
- Engineering-fault
- Manufacturing-fault
- Using-fault

Reliability Improvement during
Engineering - R-Verification
- R-Analysis
- R-Test
- HASS (Highly Accelerated Stress Screening)
- HALT (Highly Accelerated Life Testing)
- R-Demonstration

Manufacturing - ESS
- Qualifications-Tests

Product Use - Reliability Growth

3) Terms of Maintainability and their abbreviations
Is there any mathematical presentation of the following terms ?
- Maintenance
 - Preventive Maintenance
 - Mean Time To Preventive Maintenance MTTPM : no mathematical presentation (*i.e.* : valeur moyenne observée)
 - Time Between Preventive Maintenance TBPM : no mathematical presentation (*i.e.* : valeur moyenne observée)

- Maintenability : Capacity of a product to be put back(handed) in a state of given functioning, in a specified limit of time (t), when the work is made according to prescribed procedures and given conditions. This capacity can be translated in the term of probability M (t).
- Corrective Maintenance
- Mean Time To Repair : MTTR
- Repair Rate $\mu(t)$: Conditional probability that the repairation of a failing product is realized on an unit of time given from moment t, knowing that it was still not it to t.

3.1) Relations between the terms of Maintainability

to be defined
- $\mu(t) = \frac{d}{dt} M(t)$ (M(t) = maintenability)
- MTTR = $\int M(t) dt$

3.2) Terms related to Maintainability

- Maintainability - Analysis
 - Requirements
 - Verification
 - Program
 - Improvement
 - Assurance of
 - Evaluation

4) Definitions for Systems and/or Hardware

Functionality
[2] The capability of a product to provide the required function when it is used under specified conditions.

Operational Availability; Point Availability
[1] Probability that a product will perform its required function under given conditions at a stated instant of time.

Safety
[1] Ability of a product to cause neither injury to persons, nor significant material damage or other unacceptable consequences

Remark:
Safety is subdivided into accident prevention (the product is safe working while it is operating correctly) and technical safety (the product has to remain safe even if a failure occurs)
State in which the risk of harm (to persons) or damage is limited to an acceptable level

Note 1: Safety is one of the aspects of Quality
Note 2: The above definition is valid for the purposes of quality standards. The term "safety" is defined differently in ISO/IEC Guide 2

Usability
[2] The capability of a product to be understood, learned, used and efficient for the user, when used under specified conditions.

Operational Effectiveness

Logistical Support
[1] All activities undertaken to provide effective and economical use of an product during its operating phase.

Maintainability
[1] Probability that preventive maintenance or repair of an item will be performed within a stated time interval for given procedures and resources.

Remark:
A qualitative definition is:
Ability of a product to be retained in or restored to the ability to perform its required function in a given time interval under stated procedures and resources.
Maintainability is subdivided in serviceability (preventive maintenance) and reparability (corrective maintenance or repair)

Useful Life
[1] Total operating time of a product, ending for a nonrepairable product when the failure probability becomes too high or the product functionality is obsolete, and for a repairable product when the intensity of failures becomes unacceptable or when after a failure the product is considered to be no longer repairable.

Remark:
The term "Life Time" is only used for nonrepairable products. It is the time span between initial operation and failure of a nonrepairable item.
Reliability

[1] Probability that a product will perform is required function under given conditions for a stated time interval.

Remark:
This does not mean that redundant parts may not fail. Such parts can fail and be repaired.

Defect (only used for software)

[1] Nonfulfillment of an intended usage requirement or reasonable expectation, essentially present at t=0

Remark:
From a technical point of view, a defect is similar to a nonconformity, however not necessarily from a legal point of view. Defects do not need to influence the item's functionality. They are caused by flaws (errors, mistakes) during design, production, or installation. Unlike failures, which always appear in time (generally randomly distributed), defects are present at t=0. However, some defects can only be detected when the item is operating and are referred to as "dynamic defects". Similar to defects, with regard to the cause, are systematic failures; they are not necessarily present at t=0.

[3] Nonfulfillment of an intended usage requirement or reasonable expectation, including one concerned with safety

Note: The expectation must be reasonable under the existing circumstances.

Defect- Immunity) (only used for software)

[2] The capability of the Software product to maintain a level of performance when used under specified conditions

Note:
Wear or ageing does not occur in software. Limitations in "reliability" are due to faults in requirements, design, and implementation. "Failures" due to these faults depend on the way the software product is used and the program options selected rather than on elapsed time.

Supportability, Maintainability (for software)

[2] The capability of the software product to be modified. Modifications may include corrections, improvements or adaptation of the software to change in environment, and requirements and functional specifications.
Security
[2] The capability of the Software product to protect information and data so that unauthorised person or systems cannot read or modify them and authorised persons or systems are not denied access to them.

Failure
[1] Termination of the ability of an item to perform a required function under specified conditions.

Dependability
[1] Collective term used to describe the availability performance and its influencing factors, such as reliability performance, maintainability performance, and logistical support performance.

[3] Collective term used to describe the availability performance and its influencing factors, such as reliability performance, maintainability performance, and logistical support performance.

Note 1: Dependability is used only for general descriptions in non-qualitative terms.
Note 2: Dependability is one of the time-related aspects of quality.
Note 3: the definition of dependability and note 1 given above are taken from IEC 50(191), which also includes related terms and definitions.

Functionality (Capability, Technical Performance)
(1) Ability of an item to meet a service demand of stated quantitative characteristics under given conditions.
(2) The capability of a product to provide the required function when it is used under specified conditions.

Referenced Documents
[1] A. Birolini, Quality and Reliability of Technical Systems
 Springer-Verlag
1.0 What is a Feasibility Study?

A feasibility study is designed to provide an overview of the primary issues related to a technical and business idea. The purpose is to identify any "make or break" issues that would prevent the test from being successful. In other words, a feasibility study determines whether the technical issues make sense, as well as the business issues but I am concerned with technical issues here.

A thorough feasibility analysis provides a lot of information necessary for the technical plan. For example, a good market analysis is necessary in order to determine whether the project is feasibility. This information provides the basis for the market section of the business plan.

Because putting together a technical and business plan is a significant investment of time and money, you want to make sure that there are no major roadblocks facing you when the test plan is finalized and you make the investment in time and equipment. Identifying such roadblocks is the purpose of a feasibility study.

A feasibility study looks at three major areas:
1. Market issues (Not dealt with)
2. Organizational/technical issues
3. Financial issues (Not dealt with)

Again, this is meant to be a "first cut" look at these issues. For example, a feasibility study should not do in-depth long-term financial projections, but it should do a basic break-even analysis to see how much revenue would be necessary to meet your operating expenses.

The purpose of the business plan is to minimize the risk associated with a new business and maximizes the chances of success through research and maximizes the chances for success through research and planning.
(cf. University of California)

Technological Issues

The cost and availability of technology may be of critical importance to the feasibility of a project, or it may not be an issue at all.

For example, a service organization, such as a childcare centre, will have a few equipment and other technology-related issues to address. A manufacturing
enterprise, on the other hand, may have a number of complex technology questions to analyze in order to determine whether or not the business is feasible.

Key questions to answer include:

a. What are the technology needs for the proposed business?

b. What other equipment does your proposed business need?

c. Where will you obtain this technology and equipment?

d. When can you get the necessary equipment?

How does your ability to obtain this technology and equipment affect your start-up timeline?

e. How much will the equipment and technology cost?

Keeping in mind that technology doesn't necessarily mean complex machinery; if your business simply needs a personal computer, printer, and fax machine, those are your technological needs.

However, making wise decisions on even simple purchases such as office machines may require some research. Obviously there are numerous types of personal computers on the market. You many want to check Consumer Reports for their recommendations, do some comparative shopping, and ask acquaintances about their experiences with different companies. Your cost estimates will get plugged into your financial projections.

Naturally, the more complex the technology you need, the more research that will be required to make good decisions about it. This is important and should not be looked at trivially.

Feasible:

“an examination of a situation to decide whether a suggested method, plan or piece of work is possible or reasonable”.

Feasibility: noun {U}

Whether something is feasible:

"People who consider only price, and not value, are the lawful prey of those who purvey shoddy goods" John Ruskin (1819 - 1900)
2.0 The Technical Issues to Look at During the Feasibility Study

In the commercial market we have to decide what we are trying to achieve with a certain test. The main thrust is always the reliability of the product being manufactured. The product life cycle begins at the component level and continues through assembly level; the life cycle includes exposure to the following environments:

- Assembly/process
- Testing
- Storage
- Transportation
- Operating
- Servicing (preventive and corrective maintenance)

2.1.1 Assembly/Process

During processing and assembly of electronic assemblies, temperature excursions take place, e.g. soldering including reflow, cleaning or imposed thermal cycling tests. These temperature excursions can be damaging to some parts of the assembly and consume some part of the available life. This damage should be minimized by keeping the number of excursions to a minimum and the damage needs to be considered in the overall reliability estimates.

2.1.2 Testing

When devising the overall reliability test plan the frequency of applied test to the device and the fatigue that the testing induces into the product will be identified.

2.1.3 Storage

Storage tests will be defined by the product specification. The storage life of the product will be identified which may range from a few months to many years. A storage life cycle may include storage in a mobile unit to storage in a temperature-controlled warehouse.

2.1.4 Transportation

Transportation is not a single event that is simply defined. Each vehicle type may impose unique environmental loads. Each may also provide protection from certain
environmental conditions. Duration and frequency of occurrence will influence how environmental effects are accumulated over time. The transportation configuration and degree of loading can also affect the loads imposed on the product.

2.1.5 Operating
It is assumed that the operational characteristics will not affect the reliability test as the unit is a low power device and operational tests.

2.1.6 Environmental Stress Screening (ESS)
ESS has the potential to identify latent defects that may cause early failures in a product. ESS needs to be specifically designed to accelerate the failure of ‘weak’ elements in the assembly. ESS does not add to the number of such failures but causes them to occur in a significantly shorter period of time.
Effective ESS programmes should be supported by well planned ‘Root Cause Analysis’ (RCA) and corrective action resources. These enable timely corrective actions, elimination of latent defects and ultimate removal of the ESS process subject to continued monitoring and control of the manufacturing process.

3.0 Conclusion
All the above tests will be scrutinized during a feasibility study, equipment, infrastructure human resource and all the associated cost that go with these requirements.
This is the first part in looking at a reliability test programme.

Colin Weetch
1 **Test objective** (purpose, definition...)
Test where the applied constraints rose in a progressive way in very upper values in comparison to the qualification specified values and the essential objective of which being to investigate the limits of functioning and of destruction of the product in order to push them away, by suited actions, in the limits imposed by the state of the art of technology of its constituents.

2 **What is driving you for performing the test?**
- time to market of the product
- safety consideration (avionics)
- mainntability costs
- technological limit: the limit of resistance imposed by the technology of a product or of a particular constituent, toward a given constraint (temperature, vibration, electric tension, etc.). This limit establishes so an unbridgeable barrier. Ex: melting point of a plastic building material, temperature the maximum of a functioning a semiconductor in the silicon, elastic limit of a building material, etc.

3 **Level of assembly of the product submitted to test**
At the lowest possible level of assembly

4 **Number of items submitted to test**
The statistical aspects in relation with the number of realized **HIGLY ACCELERATED TESTS** on a new product intervene to at least two levels:

- The capacity of the HIGLY ACCELERATED TESTS to discover relevant causes of failing;
- The obtaining the limits of functioning and / or of destruction and the associated variableness.

With regard to the capacity of the HIGLY ACCELERATED TESTS to discover relevant causes of failing, two cases are be considered:

- 1-st case: the relevant causes of failing presumed are of abstract nature and have for effect to reveal a problem on every copy subjected to attempt, since an applied constraint exceeds the specified value. It is translated generally by an incapacity of margins, typical case of the use of a badly calibrated constituent. In that case, the realized HIGLY ACCELERATED TESTS on a very limited sample of copies, even on the single copy, turns out effective to reveal the existence of the relevant cause of defect and power so to correct it.

- 2-nd case: the relevant causes of failing presumed can affect a priori only a weak fraction of the complete population of the product (for example: less than 5 % of the population). In that case, it is not very probable that a limited number of HIGLY ACCELERATED TESTS allows to reveal this relevant cause. As example, the use of the model binomial indicate us that if one hopes to reveal an relevant cause of failing affecting only 5 % of the population with a probability of the success of 80 %, it would be necessary to subject about 30 copies to the test of HIGLY ACCELERATED TESTS. Such quantity is totally incompatible with the imperative manufacturers. Consequently, the HIGLY ACCELERATED TESTS realized in the phase of conception / development on an always very limited number of copies can not have a great efficiency toward the revealing of this type of defects. Only, higly accelerated ESS (HASS) in the phase of production will be susceptible to reveal, in addition to the manufacturing defects, these defects of the conception which would affect only a weak fraction of the products during their profile of life.
With regard to the obtaining the limits of functioning and/or of destruction of the product, the major difficulty places itself in the statistical character associated to these sizes. So, the obtaining in a different way given value on the limit of functioning the single copy does not reveal inevitably the central value of the statistical distribution of this limit which could be associated to an important population of the tested product. In particular, this unit experimental value can be a value of tail of distribution, placed to the left or to the right of the distribution. It proves why it is hardly recommended, when it is compatible with the imperatives of development, to make the HIGLY ACCELERATED TESTS on several copies and not on the single unity. The number of available copies being always very limited in the phase of development; one can consider that a number of unities which are able to go from 3 to 5 establish an acceptable compromise.

<table>
<thead>
<tr>
<th>5</th>
<th>Type of product relevant to be submitted to the test (mass volume low price product, ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Factors bound in costs and in the strategic context</td>
</tr>
<tr>
<td></td>
<td>" Strategic aspects bound(connected) to the market (ex: any right for the error from the launch of the first copies on the market, maturity of the product from the starting, ...)</td>
</tr>
<tr>
<td></td>
<td>" The imperatives of reducing the costs of resumption of the defects of conception</td>
</tr>
<tr>
<td></td>
<td>" The imperatives of reducing the times of development</td>
</tr>
<tr>
<td></td>
<td>" The imperatives of reducing the durations of ESS</td>
</tr>
<tr>
<td></td>
<td>" Also applicable in case of change of technologies if conditions of use are corresponding to a light environment</td>
</tr>
<tr>
<td></td>
<td>" High mass production with weak environmental conditions</td>
</tr>
<tr>
<td></td>
<td>" off the shelf equipment submitte to light environment in operation</td>
</tr>
<tr>
<td></td>
<td>2. bound(connected) Factors on the return to experience (REX)</td>
</tr>
<tr>
<td></td>
<td>" The insufficient operational reliability of similar products already developed and produced by the company (REX in operation)</td>
</tr>
<tr>
<td></td>
<td>" Numerous problems generated in production on similar products of the previous generation (REX in production)</td>
</tr>
<tr>
<td></td>
<td>3. Factors bound to the uncertainties</td>
</tr>
<tr>
<td></td>
<td>" The use of technologies in very innovative character or of the new strategies of implanting of constituents</td>
</tr>
<tr>
<td></td>
<td>" Use of new processes in production</td>
</tr>
<tr>
<td></td>
<td>" The conditions of employment of the product not or little tried</td>
</tr>
<tr>
<td></td>
<td>" Strong variableness of the profile of use of the product (ex: produced " general public ")</td>
</tr>
</tbody>
</table>
"Strong variableness of the performances or of characteristics of the product in some constraints of environment or of use
"Supply beside new suppliers
"The use of constituents except specification (ex: the case of constituents "civilians" used in the military or spatial applications)

<table>
<thead>
<tr>
<th>No</th>
<th>Observation</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Test duration (days, weeks, months..)</td>
<td>The duration of a highly accelerated test campaign is very brief: of the order of 5 days on average.</td>
</tr>
<tr>
<td>7</td>
<td>Separate or combined environments</td>
<td>Combined environments are not a condition but can be employed if necessary to disclose a failure. For example, we can gradually increase the vibration level for a given rate of temperature variation or by increasing gradually this rate for a given level of vibration.</td>
</tr>
<tr>
<td>8</td>
<td>Product strength and environment stress variabilities are or aren't considered (in the process of deriving the test severity)</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>Does the test bring knowledge on reliability parameters ?</td>
<td>no</td>
</tr>
<tr>
<td>10</td>
<td>Does the test consume totally or partially the life potential of the equipment submitted to test ?</td>
<td>Yes, the product under test is normally destroyed</td>
</tr>
<tr>
<td>11</td>
<td>main norms, standards, technical references relative to this type of tests</td>
<td>no</td>
</tr>
</tbody>
</table>
Test objective (purpose, definition...)

Objective: to make quicker investigations in reducing the test duration. Principle: the product is subjected to conditions of use or to constraints of environment amplified in order to accelerate the mechanisms of failure and to reduce the necessary duration to estimate some behavioral characteristics of the product in the normal conditions of employment.

Don’t make the confusion between the “accelerate testing” with “highly accelerate testing” whose aim is very different (see § XX). The accelerate testing has nothing to do with ESS or highly accelerated testing.

Conditions of application:

- Know the analytical model making the relation between the damage with the amplitude and duration of the applied conditions.
- Know the value of the parameters involved in these models.
- The provoked mechanisms of failure have to be representative of those arising in the normal conditions of employment.
- The phenomena of interactions between several constraints of employment or of environment must be taken into account.

Testing is done until failures take place and the key is to understand the failures and their relationship to the applied stresses.

Accelerated life testing is performed to obtain information on the product (component, module, system etc.) lifetime distribution or a particular reliability parameter in a timely manner. This can be done in two different ways or in a combination of them:

- using time compression, for example by changing the length of on and off cycles
- accelerating the loading conditions

The purpose of life testing is to identify the relevant failure mechanisms that would occur, and correlate these with the point in the product’s life the failure would occur. All the stresses during the product’s whole life cycle need to be addressed – e.g. transportation, storage and the actual use conditions. These conditions usually include different and changing temperatures, humidity, mechanical stresses (vibrations, shock, bumps etc.), electrical and electromagnetic phenomena etc.

What is driving you for choosing the test? To be generalised

- time to market of the product
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Level of assembly of the product submitted to test</td>
<td>Quite often the greatest benefit of accelerated tests (in term of knowledge acquisition) is achieved by performing tests at the lowest level of assembly. Test should also be made early in the product development process. However, testing should be continued during the different phases of the product development – from design phase (testing done on early prototypes) to manufacturing qualification and/or to periodic qualification tests.</td>
</tr>
<tr>
<td>4</td>
<td>Number of items submitted to test</td>
<td>For statistical confidence the need is often higher than what is practically possible; about five being a minimum but few tens would be needed. In general one; the application on higher amount might be a response for product variability considerations: see following § 8</td>
</tr>
<tr>
<td>5</td>
<td>Type of product relevant to be submitted to the test (mass volume low price product...)</td>
<td>STOP All types.</td>
</tr>
<tr>
<td>6</td>
<td>Test duration (days, weeks, months...)</td>
<td>Accelerated stress test can be made variably in days or few weeks. Life testing typically requires several weeks, even some months.</td>
</tr>
<tr>
<td>7</td>
<td>Separate or combined environments</td>
<td>Different types of stresses are needed to precipitate the different failure mechanisms. Proper combination of stresses may be used to realise synergistic effects – for example thermal cycling and vibration. Humidity is also usually applied with higher or varying temperature.</td>
</tr>
<tr>
<td>8</td>
<td>Product strength and environment stress variabilities are or aren’t considered (in the process of deriving the test severity)</td>
<td>Yes.</td>
</tr>
<tr>
<td>9</td>
<td>Does the test bring knowledge on reliability parameters?</td>
<td>Life testing aims at getting an estimate of for example of the failure rate (or MTTF, MTBF) or the on-set of wear-out mechanisms (life time) or at least the relevant failure mechanisms.</td>
</tr>
<tr>
<td>10</td>
<td>Does the test consume totally or partially the life potential of the equipment submitted to test?</td>
<td>Accelerated stress tests and life tests are destructive.</td>
</tr>
</tbody>
</table>
| 11 | main norms, standards, technical references relative to this type of tests | - Environmental testing, accelerated stress tests: IEC 60068-2 – standard series
- Mechanical and climatic test methods (semiconductor devices): IEC 60749 standard series |
Development test

1) Test objective

Development tests are used to determine the aptitude of components, materials and/or designs to meet the requirements (functional and operational) of a given specification. These tests may prepare for the qualification, or the RDGT or reliability demonstration, but not only: they also can contribute to prepare R&D decisions.

Outgoing from the specified environmental requirements relating to operation, transportation and storage, the appropriate test procedures, the stress levels and the test duration shall be chosen, considering the experiences with earlier development and the know-how of the test specialists.

The test results are used to make design decisions as well as to evaluate the "Reliability" and/or the "Life Time" of a product and to prove the rightness of a design. Therefore the test results, methods, tools and conditions shall be documented and stored on such a way, that the probability of loosing or distracting them is very low.

3) What is driving you for performing the test?

The tests are done during the development and design phase of a project with two aims:
- to determine the ability of materials, components and/or designs to resist on effects of specified environmental conditions, where experience is missing and/or calculation or virtual simulation is not possible or not enough accurate.
- to determine the ability of a design solution to meet the functional requirements of a given specification.

While being an substantial part of development costs and an important design tool, it is necessary to plan and to budget it at the very beginning of a development project. The principal input for this planning activity is the product specification

3- “Level of assembly of the product submitted to test

Material, component and sub assemblies.

4- Number of items submitted to test

In general one. But several may be retained for qualification in order to reduce the duration of it: the sequence of tests applied to each of them must be in relation with the real sequence expected in the field
5-Type of product relevant to be submitted to the test (mass volume low price product...):
Not relevant for those constrains covered by other specified tests (which must be stated in the test plan) such as highly accelerated tests, ...

6-Test duration (days, weeks, months..):
Depending of:
• what is the goal of the specific development test
• the type of test: endurance (several hours or days), reliability (in general 10 times the specified MTBF for one equipment or 10/n for n equipments)

7-Separate or combined environments
As much as possible: to be separated; not possible in some specific cases: presence of polymer material in a suspension (requires vibration and temperature) ...
To allow to determine the effect of single stress factors on a material or item respectively to avoid the reciprocal influence of several stresses, the test conditions are usually special lab conditions, not equal to the real environmental conditions of the product.

Remark: Combined tests (Humidity/Temperature; Vibration/Temperature etc.) are also often used, but normally applied on the final product and not for the purpose stated out under point 1).

8-Product strength and environment stress variabilities are or aren't considered (in the process of deriving the test severity)
To be seen next time

9-Does the test bring knowledge on reliability parameters?
Yes if the test is dedicated to Reliability growth

10-Does the test consume totally or partially the life potential of the equipment submitted to test?
The sub assemblies, componentsubmitted to test are no more entering in the delivery for the customer . They might be used for mock up, study or prototype purposes,
11 - main norms, standards, technical references relative to this type of tests

The results of these tests are normally only for internal use (in general not given to the customer). So the reference to the standards is not mandatory. No known standards are related to the development tests.
Accelerated tests
proposal by Henri Grzeskowiak

<table>
<thead>
<tr>
<th>principe</th>
<th>Conditions of application</th>
<th>Expected results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective: reduce the test duration Principle: the product is subjected to conditions of use or to constraints of environment amplified in order to accelerate the mechanisms of failure and to reduce the necessary duration to estimate some behavioral characteristics of the product in the normal conditions of employment</td>
<td>Know the analytical model making the relation between the speed of damage with the amplitude of the applied conditions Know the value of the parameters involve in these models The provoked mechanisms of failure have to be representative of those arising in the normal conditions of employment The phenomena of interactions between several constraints of employment or of environment must be taken into account.</td>
<td>Evaluation of the behavioral characteristics of a product in the normal conditions of employment, it for the compatible periods with the calendar constraints associated to the phase of development of the product</td>
</tr>
</tbody>
</table>

Evaluation of the behavioral characteristics of a product in the normal conditions of employment, it for the compatible periods with the calendar constraints associated to the phase of development of the product.
1. **Test objective (purpose, definition…)**

The principle of the Highly Accelerated Environmental Stress Screening is to submit equipments coming out of production to levels of constraint far above the specified values while staying below the destructive limits which could have been revealed by a campaign of Highly Accelerated Tests.

The most evident objective of screening is to discover and precipitate any weaknesses in the product; the consequences are to improve:
- the operational reliability of the population of similar (same definition) items by precipitating latent failures and removing the weak items
- the manufacturing processes
- and eliminate residual design defects

Its main objectives are to:

- Reveal more quickly the latent defects
- Detect more quickly the production process faults
- Identify the defects that may not have been revealed by a «conventional ESS” operation
- Reinforce the product maturity and robustness

Other objectives can be associated; either for the supplier, or for the customer:

- Detect an unacceptable change in product quality
• Reduce the manufacturing and guarantee costs.
• Lower the operational maintenance costs.
• Obtain a better profitability during the guarantee period.
• Establish or preserve the brand image of the manufacturer.

2 What is driving you for performing the test?
- time to market of robust product
- safety consideration (avionics, automotive…)
- maintainability costs

For ESS
The above expressed principle where all the products are submitted to constraints levels higher than specified values must be applied in a sensible way in order to preserve the maximum of efficiency, while at the same time keeping the cost at minimum level.

The efficiency of an ESS operation (Highly Accelerated or not) must be measured by:
- Its capability to reveal the latent defects at the manufacturer premises, (those which, by lack of ESS tests would occur very quickly at the customer location),
- and the non reduction, in a substantial proportion, of the healthy products life duration when submitted to high constraints

In a conventional ESS, the levels of constraints do not traditionally exceed the specified values, which means that all manufactured products will be submitted to these constraints without any risk regarding their potential life duration.

- In the case of Highly Accelerated Environmental Stress Screening, the applied level of constraint is, by definition, far above the specified values and it is therefore advisable to ensure that all the constituents of the product can accept such level without unacceptable effect on the product life duration.

3 Level of assembly of the product submitted to test
At the lowest possible level of assembly

4 Number of items submitted to test
The usual ESS rule, which is an integral part of the manufacturing operation, is to apply it to all the manufactured equipments. However in the case of high volume production, such as car industry, apply ESS to 100 % of the production is impossible for cadence as well as cost reasons (see appendix C). In that
Before possibly deciding for the implementation of a Highly Accelerated Environmental Stress Screening test, the product must have been prior submitted to a campaign of Highly Accelerated Tests during its development phase, in order to:

- put in evidence, and / or correct according to decision, the weak points of the product
- determine the operating and / or destructive limits of the product.

The existence of known elements or identified during a Highly Accelerated Test, as being technologically weaker than the others, should be taken into account. As the case may be:

- the level of constraint will be aligned on the limits of the weakest element with the risk not to be high enough for an efficient ESS for the remainder part of the product
- the level of constraint will exceed the limits of the weakest element with the assumed risk of premature damage of this part of the product
- the ESS will be realised in one single step and a “surrounding *” technique allowing to isolate and / or to protect the weak elements will be implemented
- the ESS will be realised in several steps with levels of constraint adapted to every homogeneous part of the product

*Surrounding : Method of protection of elements, aiming to avoid that they will be submitted to too high constraint values

This choice is not neutral, it impacts directly the efficiency of the ESS process, the reliability of the delivered products and the importance of the testing means to put in place.

The example of an homogeneous product is a product constituted by a set of electronic cards of identical or nearby technologies.

As example, an heterogeneous product is constituted by:

- sub-sets of different technologies (ex electronic cards, pressure gauges, gyroscope, LCD screen, some analogical components, etc …)
- sub-sets of different masses
- sub-sets with different levels of integration (partial shields, closed boxes, etc …)

<p>| Type of product relevant to be submitted to the test (mass volume low price product ,..) |
| 4. Factors bound in costs and in the strategic context |
| " Strategic aspects bound (connected) to the market (ex: any right for the error from the launch of the first copies on the market, maturity of the product from the starting, …) |</p>
<table>
<thead>
<tr>
<th>5. bound (connected) Factors on the return to experience (REX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The insufficient operational reliability of similar products already developed and produced by the company (REX in operation)</td>
</tr>
<tr>
<td>Numerous problems generated in production on similar products of the previous generation (REX in production)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Factors bound to the uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>The use of technologies in very innovative character or of the new strategies of implanting of constituents</td>
</tr>
<tr>
<td>Use of new processes in production</td>
</tr>
<tr>
<td>The conditions of employment of the product not or little tried</td>
</tr>
<tr>
<td>Strong variableness of the profile of use of the product (ex: produced "general public")</td>
</tr>
<tr>
<td>Strong variableness of the performances or of characteristics of the product in some constraints of environment or of use</td>
</tr>
<tr>
<td>Supply beside new suppliers</td>
</tr>
<tr>
<td>The use of constituents except specification (ex: the case of constituents "civilians" used in the military or spatial applications)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Test duration (days, weeks, months..)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"</td>
<td>The duration of a highly accelerated tests campaign is very brief: of the order of 5 days on average</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Separate or combined environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined environments are not a condition but can be employed if necessary to disclose a failure. For example, we can gradually increase the vibration level for a given rate of temperature variation or by increasing gradually this rate for a given level of vibration.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Product strength and environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Stress variabilities are or aren’t considered (in the process of deriving the test severity)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Does the test bring knowledge on reliability parameters?</td>
<td>no</td>
</tr>
<tr>
<td>Does the test consume totally or partially the life potential of the equipment submitted to test?</td>
<td>Yes, the product under test is normally destroyed</td>
</tr>
<tr>
<td>main norms, standards, technical references relative to this type of tests</td>
<td>no</td>
</tr>
</tbody>
</table>

Environmental Stress Screening (ESS): production operation consisting to submit the equipment coming out of manufacture to specific tests (climatic, electric, mechanical, …) so as to accelerate the outcome of latent defects in order to eliminate them.

Highly Accelerated Environmental Stress Screening (HA-ESS): ESS test during which the values of the applied constraints are far above the specified values.

Note: the HASS (Highly Accelerated Stress Screening) is a particular case of the “Highly Accelerated Environmental Stress Screening” allowing to combine two environmental constraints (temperatures and vibrations) following a well defined methodology.

Operating limits: level of constraint above which the product does not operate any more properly. When one comes down afterwards from this level, the product performances become again nominal (character of reversibility).

Destructive limit: level of constraint above which the product will suffer irreversible damages, not enabling to come back to nominal performances when the constraint is brought back under the specified value (character of irreversibility).
Following pages are extracted from ASTE guide on HASS, intitled “Environmental Stress Screening for Electronic Equipment using Highly accelerated Tests”. Can be ordered on line on ASTE SITE (google “ASTE”).

![Diagram](image-url)

- **Failure rate** $\lambda(t)$
- **Known informations**
 - Reject
 - Km0 guarantee
 - Out of guarantee
- **Less known informations**
 - Useful life duration
 - Durability
- **Robustness improvements after applying Highly Accelerated Tests during design**
- **Environmental Stress Screening during manufacturing**
- **Random failures**
 - Reliability requirement from customers
- **End of life**
 - Recycling
- **Useful life duration**
- **Durability**
- **Time**
Constraints axis

- **Homogeneity**: Low inertia, Direct access
- **Heterogeneity**: High inertia, Structure

Easier to define constraints, ESS means at board level rather than product level

Optimal level: HOMOGENEOUS ENTITY TOWARDS CONSTRAINTS

Test axis

- **Functional test needed**
- **Non self sufficient board (NO CPU)**
- **Interface (complexity, reliability)**
- **Test bench**

Test and monitoring easier at product level rather than board level

Optimal level: FUNCTIONALY TESTABLE ENTITY
7.1 - Comparison of both methods

The ESS such as defined in the ASTE document of 1986 will be called « conventional environmental stress screening » by opposition to the “Highly Accelerated Environmental Stress Screening “

This paragraph has for objective to give elements allowing to evaluate the efficiency of the conventional ESS and of the Highly Accelerated ESS

7.1.1 - “Conventional environmental stress screening” method

The experience shows that, for a serial production, some products are much more fragile than others; as shown on the graph below, we have two statistical distributions, the one relative to healthy products, the other to fragile products.

The healthy population is located around a mean value situated beyond the specification.

In the case of conventional ESS use, Highly Accelerated Tests do not have been necessarily conducted during the product development phase and the margin (as defined on the graph) is not known.
Before classical ESS

Classical ESS

Spec

Unknowned margins

Good products distribution

Products with latent failure distribution

Good products distribution

Unknowned margins

Products with latent failure distribution
In this method, the constraints are generally applied separately, and the laws of defects appearance acceleration are known in principle. One will note also that the constraint level is always lower or equal to the specification value.

It is besides recognised in electronics, that every set containing latent defects will «age» faster than every healthy set (fuse effect).

The following graph then shows that, after a conventional ESS, the healthy population slightly decreases its duration of life. On the other hand, the products with latent defects failed in majority. But, the constraints being relatively low, and the technical margins being unknown, the danger is that some products with latent defects (weaknesses) could still be identified as being good.
7.1.2 – “Highly Accelerated Environmental Stress Screening” method

In this method, as previously mentioned, it is compulsory to have prior performed a campaign of Highly Accelerated Tests and to have obtained a robust design and a robust manufacture. Furthermore it will also allow to define margins.

The graph below shows the increase of both the robustness and the margins by the distributions gap (healthy and with latent defects) towards the right, compared to the previous graph. (based on the hypothesis of identical distributions).
For the Highly Accelerated ESS itself, the product robustness (design and manufacture) acquired during the Highly Accelerated Tests, will allow to define a profile which constraints levels will be situated beyond the specifications. It is certain, even if not easy to demonstrate, that the impact of this ESS on the product life duration will be more important than the one brought by a conventional ESS.

This is shown in the following graph, by the more significant translation towards the left of the distributions after Highly Accelerated Tests.

It will of course be necessary to verify that the obtained life reduction is not too important (see detail in paragraph 10: Validation of the initial profile and of the implemented tests means).

For the products with latent defects, due to the high levels applied, the proportion of the revealed failures is far more important than those obtained with a conventional ESS.
Before Highly Accelerated ESS

After Highly Accelerated ESS

Highly Accelerated ESS

Spec

Products with latent failure distribution after Highly Accelerated ESS

Good products distribution moves more than with a classical ESS

Applied constraints

Margins are known and higher because HAT done and weaknesses fixed
7.2 - Comparison of the environmental stress screening methods

The tab below puts in evidence the differences between the main characteristics of the conventional ESS and of the Highly Accelerated ESS.

<table>
<thead>
<tr>
<th>ESS Characteristic</th>
<th>Conventional ESS</th>
<th>Highly Accelerated ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Eliminate the products presenting early defects bound to manufacturing and to the components dispersion</td>
<td>The application of constraints beyond the specification NB: allows to detect the components dispersion</td>
</tr>
<tr>
<td>Principle</td>
<td>The application of constraints within the limits of the product specification</td>
<td>The application of constraints beyond the specification</td>
</tr>
<tr>
<td>Input data</td>
<td>The product specifications and its life profile</td>
<td>Knowledge of the operation margins and of the product limitations NB: The product robustness has been improved by increasing the operation margins (tolerance increased in components dispersal)</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Manufacturing only</td>
<td>R&D and Manufacturing</td>
</tr>
<tr>
<td>Constraints application mode</td>
<td>Sequential type: Temperature, vibration,…</td>
<td>Combined: temperature, mechanical shocks, electric constraints,…</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Moderate or weak on the stabilized products</td>
<td>Good: increased efficiency in terms of control of the operation margins Maturation and faster mastery of the manufacturing process</td>
</tr>
<tr>
<td>Profile acquisition</td>
<td>Long and iterative because based on the return of experience 1 year or more</td>
<td>Fast due to the methodology Around 3 to 6 months</td>
</tr>
<tr>
<td>Speed</td>
<td>Indicative duration: 2 to 4 days</td>
<td>Indicative duration: 2 to 8 hours (reduces the production cycles)</td>
</tr>
</tbody>
</table>
7.3 - Other advantages

In addition to the benefits already mentioned in paragraph 5, the implementation of the Highly Accelerated ESS presents the following advantages:
• A standard process applicable by the Company both internally and externally
• The facilitation of the dialogue between the design actors and the manufacturing actors
• The satisfaction for the employees to be better involved in the possibility to touch the state of the art of the manufacturing process;
• A systematic approach of Quality.

7.4 - Potential problems and precautions:

To set up an Highly Accelerated ESS operation within the manufacturing phase could be delicate, especially at the level of the communication within the company community, and therefore require a certain number of pre-requisites, as follows.
• The implementation of Highly Accelerated Tests at upstream stage being necessary for the definition of the Highly Accelerated ESS profile, it is thus necessary to involve the design teams very early in this process.
• It is necessary to increase the subcontractors awareness in the method, and to draw up with them the adapted procedures; if not, the risk is to get them not adhering to the process, and the manufacturing transfers to them would become difficult.
• A message to the customers explaining the pro’s and con’s of the ESS process could also become interesting, or even necessary.